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Abstract

The phase curve of an asteroid shows how its brightness changes as a function of solar phase angle. The
project of determining an asteroid’s phase curve is challenging because it combines four photometric objectives:
determination of the asteroid’s rotational lightcurve, monitoring the asteroid over a wide range of solar phase
angles, high photometric accuracy, and FOV bridging or “all-sky” photometry to link the asteroid’s brightness
from night to night. All of these are important because the different shapes of phase curves (caused by different
surface characteristics) have a subtle effect. The typical phase curve project requires photometric accuracy of
about +0.03 mag or better; commits the observatory to a dozen nights, spread over about 2 months; and
commits the astronomer to a set of data analyses that is significantly more extensive than is required for a typical
“differential photometry rotational lightcurve” project. In this paper | will describe how | have gathered the
necessary data, the procedures for data reduction, and some challenges in determining the slope parameter G.

1. Introduction

An asteroid’s phase curve contains valuable
information related to the surface characteristics of
the asteroid. Amateur efforts to determine asteroid
phase curves are a much-needed addition to our
knowledge, because not many asteroids have well-
determined phase curves, and few professional
astronomers are doing such studies.

The purpose of this paper is to explore a few
practical aspects of the asteroid phase curve project:

e  What does a “good” phase curve look like?

e What range of solar phase angles must be
covered, and how long is this likely to take?

e  What photometric accuracy is required?

e Should magnitudes be transformed to the
standard V-band, or left in instrumental v-band?

e  Should the phase curve plot mean magnitude or
peak magnitude of the lightcurve vs. solar phase
angle?

e Does the lightcurve change as the solar phase
angle changes?

e  What procedure do the pro’s use to determine
phase curves from photometric data?

e For what level of accuracy should you strive
when determining H and G?

I’ll describe these topics in the context of two
phase curve projects that I did in the past year. One
of these, 1130 Skuld, was immediately successful
(Buchheim, 2010). The other, 535 Montague, was
more troublesome, but was a useful Ilearning

experience. The result for it will be submitted to the
Minor Planet Bulletin shortly.

2. Phase Curve Background

The geometry of the observation of an asteroid is
illustrated in Figure 1. The solar phase angle () is
analogous to the moon’s phase; when a = 0°, the
asteroid is “full” (i.e. fully illuminated). When a =
90°, the asteroid is in quadrature and is illuminated in
the same way that a first- or third-quarter Moon is in
that half of it its visible surface is in light and half is
in darkness. Because of where they orbit, outside
Earth’s orbit, main belt asteroids don’t reach solar
phase angles much greater than about 20-30°. For
example, think of Mars. It shows a “phase defect” but
you never see a crescent Mars. The farther an object
orbits from the Sun, the smaller the maximum
observable solar phase angle. More distant objects
(e.g. Jupiter Trojan asteroids) display a smaller range
of solar phase angles and Kuiper-belt objects are so
far away that Earth-bound observatories can observe
them at solar phase angles of only a =~ 0° £ 2°.

On the other hand, near-Earth asteroids during
their close approaches to Earth can be observed at
quite large phase angles and, of course, spacecraft
can arrange to observe their targets at large phase
angles (Newburn et al., 2003).

The motion of Earth and the asteroid in their
respective orbits around the Sun gradually alters the
solar phase angle. For a typical main-belt asteroid,
the solar phase angle will go from about -20° to



nearly 0° (at opposition) over an interval of 2 to 3
months and then increase to about 20° over another 2
to 3 months.
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Figure 1: Geometry of orbits:
distance, and solar phase angle
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2.1 Characteristics of Bi-directional
Reflectivity

Imagine a narrow beam of collimated light aimed
at a flat surface. Perhaps the surface is covered with
snow, or with dirt, or with rocks. The surface isn’t
smooth, so it won’t reflect the light like a mirror. In
most real surfaces, there is a “forward gloss” (a
noticeable amount of the incident light comes off in
the direction that a mirror would have sent it), a
“backscatter” (a fair amount may be reflected back
toward the light source), and a general diffuse
reflection that goes off in all directions. The smoother
the surface, the more light is likely to be directed into
the forward gloss. In a perfectly smooth (glassy ice)
surface, quite a bit of the reflected light is directed
into the forward gloss, giving a nearly specular
reflection from the mirror-like surface. If the
incoming beam is directed exactly perpendicular to
the surface, then the “forward gloss” is directed back
toward the source. This is the geometric situation that
you have at solar phase angle = 0°. The forward and
reverse glosses are both directed toward the observer.
There can be a pronounced increase in brightness
near zero solar phase angle as a result of this
phenomenon, which is the so-called “opposition
effect”.

There are at least three physical effects that give
rise to the opposition effect: “shadow hiding”,
“multiple scattering”, and “coherent backscatter” (see
Lumme & Bowell, 1981).

2.2 Reduced Magnitude

Throughout an apparition, the solar phase angle
isn’t the only thing that changes. The Earth-asteroid
and Sun-asteroid distance also change continuously.
These changing distances naturally affect the
asteroid’s observed brightness and work in
combination, not independently. This leads to the
concept of “reduced magnitude” to account for the
changing distances, which is defined by

Vr=V - 5log(RD) Eq. 1
Where
V  observed V magnitude
R distance Sun to Asteroid (in AU)

D distance Earth to Asteroid (in AU)

Vr is the brightness that the asteroid would have
had if it were placed at 1AU from the Sun, and
observed from a distance of 1AU from the observer.
By placing it at a standard distance, Vyr “backs out”
the effect of changing distance. Reduced magnitude
is also sometimes written “Vg(a)” to show that it is a
function of solar phase angle (o). Another standard
nomenclature, used in the standard phase curve
model, is that reduced magnitude is called “H(a)”,
and the special value H(0) when solar phase angle is
zero is called simply “H” (the absolute magnitude of
the asteroid).

For main belt asteroids, these distances change
slowly, so that they can be treated as if they are
invariant over a few nights. However, over the
couple-month time duration of a phase curve project,
they probably change noticeably. Plotting Vg vs. o
shows how the brightness is changing solely due to
the phase effect. That is the essence of the phase-
curve project.

Add to above the fact that the asteroid is also
rotating, meaning that its brightness changes on a
time scale of a few hours as it spins. If the asteroid’s
brightness is measured many times as the apparition
progresses, its brightness changes due to all three
effects.

2.3 Standard Phase Curve Model

As described in Bowell et al. (1989), the two-
parameter “H-G” model uses the following equation
to describe the brightness (in reduced magnitude) of
an asteroid as the solar phase angle changes:

H(a)=H -2.5log[(I-G)®,(a)+GD,(z)] Eq.2



Where:

H The “reduced magnitude” at zero phase
angle. It is sometimes written Hp to
explicitly denote that it is a = 0°, or
H(1,1,0) to denote that it is based on sun
earth distances being 1 AU and a = 0°.
These all mean the same thing.

@, ®, These are functions that describe the

single and multiple scattering of the
asteroid’s surface. These functions are
given in Appendix A, but if you are
studying a main-belt asteroid and using
MPO Canopus, you don’t need to deal
with these equations because MPO
Canopus’ H/G Calculator handles them.

G The “slope parameter” that describes the
shape of the phase curve. The
fundamental goal of the phase curve
project is to determine G by plotting the
data points (H vs. o) and finding the value
of G that is the best fit to the data.

2.4 What Does a “Good” Phase Curve
Look Like?

I searched the NASA ADS abstract service for
“asteroid phase curves” and spent a few days at the
local university library skimming through /carus and
the Astronomical Journal to find several papers
describing asteroid phase curves that were developed
by professional astronomers. Figure 2 is an example
from Harris et al. (1989) of a “good” phase curve.
Note several features:

e The phase coverage is broad, from very low
(near-zero) phase to phases greater than 20°.

e The phase coverage is dense, giving confidence
that the data have captured the essential shape of
the curve.

e The photometric accuracy is excellent. In this
particular case, the error bars are barely larger
than the plotted symbols.

That is a challenging quality level for which to
strive, but one that seems to be important. There are
strong indications that the phase curve, specifically
the slope parameter (G), is telling us something about
the albedo and surface texture of the asteroid.
However, G only changes by a few tenths, so the
photometry and data analysis need to be quite
accurate if the phase curve is to be reliable at this
level. A few years ago, in my first attempt at a phase
curve, the curve looked nice, but a combination of
insufficient photometric accuracy (“only” about

+0.05 mag) and insufficient phase coverage (a = 2-
12°) left me unable to distinguish between two
competing values (G = 0.15 vs. G = 0.25) that had
been previously published.

It is also worthwhile noting that the data in
Figure 21 deviates somewhat from the H-G model
curve, particularly in that the data show a larger and
sharper opposition effect than does the H-G model.
This is not a unique example. Belskaya and
Schevchenko (2000) show several phase curves
where the data deviates from the H-G model. Getting
more and better data provides a better understanding
of the opposition effect and of asteroid surface
properties.
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Figure 2: Example of a “professional” phase curve.
Replotted from data in Harris et al. (1989).

2.5 What is the “Typical” Expected
Range of G for Different Asteroid
Types?

Both Harris (1989) and Lagerkvist and
Magnusson (1990) determined slope parameters G
for a goodly number of asteroids and correlated G to
the asteroid taxonomic type. They found values
ranging from G = 0.04 £0.06 for low albedo (e.g. C-
type) asteroids to G = 0.45 £+ 0.04 for high-albedo
(e.g. E-type) asteroids. They showed a definite
correlation that low-albedo objects had low G values
and high-albedo objects had high G values.

These results mean that we don’t expect to see a
very wide range of G values. In order to provide a
meaningful G value that can distinguish between
different asteroid types or other asteroid properties,
the accuracy of our determination must be pretty
good, say within a formal error of £+ 0.05 or better.

Before going on, it’s important to say that
finding a value for G is not sufficient on its own to
determine taxonomic class. Without other supporting



evidence, the best being spectral data, the most one
can say is that value of G that is found is consistent
with a particular taxonomic class or, more generally,
objects of low or high albedo.

2.6 Can My Phase Curve Distinguish
Between Different Values of G?

The nature of the need for quite good accuracy
can be illustrated by Figure 3. Here, two phase curves
are plotted, one with G = 0.1 and the other with G =
0.3. How difficult is it to distinguish between these
curves? If we have noise-free data ranging from a =
0° to a = 30°, it’s easy to tell the two curves apart.
For example, the brightness difference between the
curves at a =~ 25° is about 0.25 mag. If we only had
data going to, say, a = 10°, it would be harder to tell
the two curves apart, since at o = 10° the two curves
differ by only about 0.15 mag. So you can see that
it’s important to follow the asteroid out to fairly large
solar phase angles.
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Figure 3: Theoretical phase curves, illustrating shape
effect of “G” value and importance of reaching large
solar phase angle.

Now suppose that we missed the nights near
minimum solar phase angle and started observing the
asteroid at o = 3°. We don’t know what its brightness
was at o = 0°, so can we tell the difference between
the G = 0.1 curve and the G = 0.3 curve just by their
shapes and slopes? That is the situation shown in
Figure 4. The curves are virtually identical, differing
by only 0.05 mag over the range o = 3-12°. Without
those critical “near-zero solar phase” data points, it is
very difficult to distinguish between different values
of G. The H/G calculator utility in MPO Canopus

will give you an answer, but the uncertainty will be
large enough that the result can’t be used to reliably
distinguish between different taxonomic classes.

It is important to get those critical “minimum
phase angle” data points, because the G calculated
from observations only at o > 5° can be misleading.
Hasegawa et al. (2009) noted this problem in their
study of 4 Vesta. Using data from a ~ 1.5° to 24°, the
inferred value was G = 0.32 = 0.04, but when the
additional data points down to a = 0.12° were
included, they determined the (presumably “correct”)
significantly smaller value G = 0.23 + 0.02.
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Figure 4: Reaching very low solar phase angle (o= 1°) is
important, to distinguish G values and observe the
“opposition effect”.

2.7 Minimum, Maximum, or Average
Magnitude?

Asteroids change brightness as the rotate, so the
long-term change in brightness caused by the
changing solar phase angle is superimposed on a
(usually) much more rapid cyclic variation in
brightness due to the rotational lightcurve.

Should the phase curve use the average,
maximum, or minimum magnitude of the asteroid’s
rotational lightcurve? There seems to be no single
answer to that question in the literature. The initial
formal recommendation of the H-G system, reported
in Marsden (1985), is silent on the subject. The
seminal description of the H-G system (Bowell et al.,
1989), explicitly relates it to the mean (average) V-
band magnitude. Yet, some other examples of phase
curves reported in the literature are based on
maximum light, such as Harris (1989).



There are theoretical and mathematical reasons
to expect that the slope parameter of the phase curve
may be slightly different depending on which points
of the lightcurve are used. For example, Helfenstein
and Veverka (1989) report calculations for the
idealized cases of spheres and ellipsoids whose
surfaces follow a standard reflectivity law. The phase
curves for maximum, mean, and minimum magnitude
have slightly different slope parameters. The
difference isn’t great, but it neither is it trivial. The
difference between their “max light” vs. “min light”
phase curves amounts to about 0.3 mag at a solar
phase angle of 30° (after the rotational lightcurve
effects are removed).

I also note that there is a subtle risk in the
terminology regarding “mean” or ‘“average”
magnitude. First, the average magnitude is not the
same as average brightness (or average light) — that
logarithmic function in the definition of magnitude is
important! Most published phase curves that use the
mean magnitude state explicitly that it is ‘mean
magnitude’, not ‘mean light’ that is being calculated.
If the rotational lightcurve is complex, then the
determination of the mean (average) magnitude may
not be obvious. The formal definition of “mean
magnitude” is that the rotational lightcurve encloses
an equal area above and below the mean-magnitude
line (Gehrels, 1956). That is, the mean magnitude is
not necessarily the midpoint between the brightest
peak and the faintest valley of the rotational
lightcurve.

Considering that defining and identifying the
“maximum” and “minimum” brightness of a real
asteroid lightcurve is pretty unambiguous, and
figuring that the possible difference between the
phase functions based on “max” versus “min”
brightness might be interesting, I’ve chosen to
determine both the “max” and “min” brightness
phase curves for my targets. As it worked out, in the
case of 1130 Skuld there was almost no difference in
G as determined by max vs. min brightness. For 535
Montague, the “max brightness” phase curve appears
to have a significantly different slope than does the
“min brightness” phase curve.

3. Phase Curve Error Analysis

If you are mathematically inclined, you can
understand the importance of these features by
reference to the linear error analysis given in
Asteroids 1.

Suppose that we have measurements of H(a) at
many different solar phase angles. Call the phase
angles where we have measurements a;, with i = 1, 2,
3,...N.

The phase curve is just the graph of H(a) vs. a
and so the graph will have N data points. We will fit
the data points to the curve of Eq.2 to get the best-fit
value of G. The H/G Calculator utility in MPO
Canopus is a particularly convenient to do this curve
fitting.

If we make a simplifying assumption that the
photometric accuracy is the same for all data points,
then the expected error in the estimated (best-fit)
value of G is:

Eq.3

[N 1 1
AG=o,|——- . =
N-2 |3 42— Na2 (0.0673 - 0.1132G +0.0615G7)

In this equation

o is the RMS photometric error in magnitudes
(approximately 1/SNR). Obviously, smaller ¢ is
better, achieved by higher SNR in the photometry.

N is the number of solar phase angles at which
we have data points. The square root term with “N-2”
in the denominator demands that we make N (the
number of data points) greater than 2. If N = 2, then
we have no knowledge about the uncertainty in the
slope parameter, G. This isn’t so mysterious if you
remember that the phase curve has 2 parameters (H
and G), hence with any two data points we can find a
curve that is a perfect fit to the data, but there is no
information about the probable error in the fit that
might be caused by noise in the data. As long as N >
5, the square-root term is not much larger than 1.

a; are the solar phase angles at which we have
data (withi=1, 2, 3, ..., N), and

ay is the average phase angle,

@ =[N e

The term involving the sum of the squares of the
phase angles at which data points are given (Z al )

and the average phase angle ¢, is a very important

contributor to the error in G. A couple of
observations about this term help to understand its
significance. First, if we have data at only a single
phase angle, then a =a, and, therefore, the

denominator of this term equals 0. In this case, the
uncertainty in G becomes indeterminate. That is, if
we have only a single data point, then we know
nothing about the shape of the curve and, hence,
nothing about G. Second, the greater the range of
solar phase angles covered by the data set, then the
larger this denominator becomes and so the more
accurately we’ll know G.

For example, suppose that we have data at phase
angles 0, 2, 4, and 6 degrees. The number of data
points is N = 4, the sum-square is » o’ =561, and



the mean phase is ¢, =3. The resulting value of this

termis and 1/[4/...] = 0.22. Now, suppose we get two

more data points, at o =8 and 10 degrees phase angle.
Then we have N = 6 data points, the sum-square

phase is Zaiz =220, the average phase angle is
now @, =5, and 1/[/..] = 0.12. So, getting those

two more data points at larger phase angles provided
a nearly two-fold improvement in the accuracy of our
determination of G.

There is a tricky point here: it isn’t just the fact
that we had additional data points, but also that they
were spread over a wider range of phase angles. The

dispersion is described by the term [Zaf — Na(f ]”2,

and it is the dispersion that is important. Having data
points spread over a wide range of solar phase angles
makes this term larger and so improves our estimate
of G. This is reasonable, since in order to determine
G we are looking at the shape of the magnitude vs.
phase graph, but at the curvature in the graph, and
this requires both many data points (to get the benefit
of averaging) and a wide spread in the phase angle
(to better display the curvature).

Now, let’s look at “typical” values of these
terms.

o is the photometric accuracy. If we have SNR =
100 on both target and comp star, then we expect to
be able to get 6 = 0.014 magnitude (assuming no
systematic errors...)

The term | N ranges between about ~ 1.73 to
N-2

1.12 (for N=3 to 10 data points).

The term 1

JZaf - Nag

0.12 in the example above. If we had equally-spaced
data points at 0, 2, 4 ... 20 degrees, then this term
would be 0.048, and it would get as small as 0.030 if
we could go all the way to phase angle 28 degrees.
The term involving G,

ranged from 0.22 to

1
(0673 -.1132G +.0615G?)

varies between 14.9 (for G = 0) to 42.3 (for G =

0.55), over the reasonable range of expected values.

Of course, you can’t do anything to affect this factor.
Only o, N, and the range of a values are under

the observer’s control, so by far the most significant

things you can do to improve the accuracy of your
estimate of G are:

e Get high signal-to-noise ratio, and properly
calibrate your fields, to achieve good
photometric accuracy. Shoot for 6 < 0.02 mag or
better.

e Get data at as many phase angles as possible,
over as wide a range as possible. Take advantage
of opportunities when an asteroid is at very low
phase angle (a < 1°), and follow the asteroid as
long as practical to get up to high solar phase
angle (a > 15°).

If our goal is to get 4G = 0.05 or better, then we
need SNR > 100 and the dispersion term < 0.14. A
little playing around with the numbers demonstrates
that this implies a requirement for at least 5 data
points, spread out between a ~ 0° to at least o, = 15°,
and photometric accuracy better than = 0.03 mag.

4. Determining the Phase Curve

The procedure 1 use for measuring the phase
curve has the following steps.

Observations
Planning and scheduling

CCD photometry of the asteroid lightcurve

Calibration of each night’s comp stars at my
observatory, or at a remote internet observatory

Data reduction
CCD image reductions

Differential photometry: Lightcurve reduction
and Fourier curve model

Data Analysis
Put differential lightcurves onto a single baseline
and determine asteroid color index

Download Asteroid dynamical parameters: solar
phase angle, Earth distance, and Sun distance

Translate lightcurves from V-mag to reduced
magnitude Vg

Determining brightness at selected rotational
phase points (max and min brightness) by using
“actual” data points or “extrapolation” to
min/max brightness using Fourier fit curve

Plot the phase curve (Vg vs. @)

This is a project for which you need to enjoy the
time at your desk and computer as much as you enjoy
your time in the observatory under the stars.
Convince yourself that the data reduction and data
analysis is really interesting! Constructing a phase
curve will stretch your CCD photometry skill
compared to differential photometry for rotational
lightcurves. The project of determining an asteroid’s
phase curve is challenging, because it combines four
photometric  objectives: determination of the
asteroid’s rotational lightcurve, following the asteroid
over a wide range of solar phase angles, doing either



FOV bridging or “all-sky” photometry to link the
asteroid’s brightness from night to night, and
achieving quite high photometric accuracy.

4.1 Observations

4.1.1. Planning and scheduling:

There are two big differences between planning a
“phase curve” project and planning a “lightcurve
project”. The first difference is the number of nights
involved. Whereas you can often make a fine
lightcurve determination with a few nights’ data, the
phase curve project requires that you follow the
asteroid over a wide range of solar phase angles,
which usually means devoting about a dozen nights
over a couple of months. The second difference is the
importance of getting lightcurve data on the nights of
minimum phase angle. For a “lightcurve” project, it
isn’t particularly important which night(s) you
observe, but if you are going to create a good phase
curve that captures the “opposition effect”, it is
critical to get data on the nights near o = 0° £ 2°.

The most attractive targets are those few
asteroids that reach a very low solar phase angle (a <
1°) each year, since they offer the opportunity to
measure the “opposition effect” that is a
distinguishing feature of the phase curve. Each issue
of the Minor Planet Bulletin contains a list of “low
phase angle” candidates. You’ll need to sort through
that list to identify targets that are appropriate for
your location and equipment. I look for objects
whose maximum brightness is at least 14 mag (for
good SNR) and whose declination is higher than
about 10 degrees (because from my 33 degree
latitude and not-so-good southern horizon I don’t
have many hours per night available for targets at low
declinations). Because of the orientation of the
ecliptic (where most of the main-belt asteroids are
concentrated), this declination filter means that
autumn and winter are the phase-curve season at my
observatory.

I begin following my target a few nights before
minimum phase angle. There is value in getting good
data both “pre-opposition” and “post-opposition”, but
there is a risk that the “pre-opposition” data may be
orphaned if it’s cloudy on the few nights of minimum
phase angle. From my backyard observatory on the
coastal plain of southern California, it’s not unusual
to lose a string of nights to clouds. I haven’t done a
statistical analysis, but there does seem to be a
surprising correlation between an asteroid reaching
low phase angle and clouds settling over my
neighborhood.

4.1.2. CCD photometry of the Asteroid
Lightcurve

The project begins with fairly routine imaging
for asteroid lightcurve observations. I usually use a
two-color (photometric filters) imaging sequence (R-
R-V-V-... etc) near opposition, when the asteroid is
brightest and I can get a good SNR with modest
exposure duration. Far from opposition I turn to
“clear” (unfiltered) images to maintain high SNR as
the asteroid fades. If I'm imaging in the “clear” filter,
I still scatter a few V- and R-band images into the
sequence to help link to nights where the images are
primarily V- or R-band.

Making several nights with two-color image sets
enables me to determine the asteroid’s color (V-R).
Color index is useful for two reasons. First, it is
necessary to know the color index during data
analysis in order to transform the C-band images to
V-magnitudes. Second, it confirms that the asteroid’s
color does not change as it rotates. (Yes, I know that
the conventional wisdom, and all published data says
that the full-disk color is essentially invariant at the
+0.05 mag level, but who knows? There might be a
surprise waiting to be discovered!)

I noted in the error analysis above that getting a
good phase curve demands quite good photometric
accuracy. Harris and Young (1989) is a strong
example of this. They strove for photometric
accuracy of “a few thousandths of a magnitude”.
They also advised staying on the instrumental (b, v, r)
system to maintain this level of differential
photometric accuracy because once transformations
are done (to get onto the standard B, V, R system), it
is very difficult to achieve much better than 0.02 mag
accuracy. Unfortunately, I wasn’t able to follow this
advice fully (see the next section), and their
guesstimate of 0.02-mag accuracy is about what I got
overall.

4.1.3. Calibration of Each Night’s Comp
Stars

Because the essence of the phase curve project is
the determination of how the asteroid’s brightness
changes, it is necessary to know the comp star
brightness. There are two approaches that can be
used: “linking” of comp stars from night to night (on
the instrumental system), or “all sky photometry” to
determine the B-V-R magnitudes of comp stars from
all nights.

From a good observing site, the easiest way to do
this is to link each nights comp stars to the preceding
night. The idea is to take a short break near
culmination, move the scope to the FOV of a



“reference night”, take a few images (in all colors, if
you’re doing two- or three-color series), and then
return to the current night’s asteroid lightcurve series.
Having images of “tonight’s comp stars” and the
“reference night’s” comp stars, both at the same
(low) air mass enables you to link the comp star
brightness for all nights, relative to the reference
night. It’s usually most convenient to make the first
night of the project the “reference night”, but it
doesn’t really matter which night is chosen as the
reference night.

For example, suppose that on night 1 we used
star X as the comp star and on night 2 star Y was the
comp star (and that the asteroid has moved fast
enough that we can’t fit both into a single FOV). On
night 2, near culmination, we took a few images of
the FOV from night 1 (that contains star X). Make a
table such as shown in Table 1.

Assume that we have a reasonable (catalog)
value of the V-mag of star X = 12.65. This doesn’t
have to be particularly precise value because we’re
going to use it as an “anchor point” — all nights and
all comp stars will refer back to it. If its assigned
magnitude is off a bit, it will only affect the resulting
calculation of H; it won’t affect the value of G, which
is a function of the shape of the phase curve. Further,
we’ll stay on the instrumental system and not try to
bring each comp star into the standard BVR
photometric system.

Now on night 2, we measured the instrumental
magnitude (IM) of both star X and star Y at
essentially the same air mass, and at nearly the same
time, so that we can (hopefully) assume that the
atmospheric conditions are the same on all images.

Since we are assuming that our sensor is linear,
we can write:

[mag of star Y] - [mag of star X] = [Y,-X;]
The V-mag of star Y is then calculated by:

[mag of star Y] = [mag of star X] + [Y,-X;]

to anchor the calculations

By doing this for each night, and staying on our
instrumental system, our determination of the phase
curve won’t be infected by any problems doing
transforms.

Any error in the assignment of a V-mag to the
anchor star (star X) will result in a comparable error
in the calculated asteroid absolute magnitude (H). In
this example, if the “true” magnitude of star X were
12.50 instead of 12.65, then our calculated value of H
would be high (faint) by 0.15 mag. However, our
determination of the phase curve parameter (G)
would not be affected at all. Remember that G
describes the shape of the curve and not its absolute
brightness.

The good news about this is that you can stay on
your instrumental system and that modest error in
determining (or estimating) the V-mag of your
reference night’s comp stars won’t upset the shape of
the phase curve. The drawbacks are: (1) this method
requires that each night that you do “linking” must be
clear and stable so that changing sky conditions
during the interval when you’re doing the linking
don’t confuse the results, and (2) near opposition, the
lowest-air-mass will occur at around midnight. The
thing about that is that [ have to be at work early the
next morning. My preferred operating mode is to set
the observatory to take a series of images of the
target field all night — while I’'m asleep — which
means that doing the “linking” isn’t convenient.

Unfortunately, really clear and stable (“sort of
photometric”) nights are infrequent at my backyard
observatory, so I can’t be confident that this “linking”
procedure will be satisfactory. It isn’t unusual to see
atmospheric transparency change by a tenth of a
magnitude or so over less than an hour on a “typical”
night. So, I have used two different approaches to
linking the comp stars by “all sky” photometry.
When a nice clear and stable (“sort of photometric™)
night arrives, I devote that night to calibrating all
comp stars from all of the nights used for asteroid
monitoring. This entails imaging of:

where
Y2 the instrumental magnitude of star Y, as ¢ a Landolt field near the horizon (air mass = 2)
measured on night 2 e a Landolt field near culmination
X2 the instrumental magnitude of star X, as e each FOV used for asteroid photometry
measured on night 2 e one or more additional Landolt fields
MagX  the “assigned V-mag” that we are using The first two Landolt fields enable me to
Table 1: “Linking” comp stars from different nights and FOVs
IM (near culmination, | Assigned
Night | Star at air mass = l+g) V-mag | Calculation of “Linked” V-magnitude
1 X -10.50 12.65
2 Y -10.650 Y= X + [Y2-X5]
X -10.40 Y,=12.65 +[(-10.65)- (-10.40)]




determine the atmospheric extinction coefficient
(using the “Hardie method”). Capturing one or two
additional Landolt fields after the FOV imaging
provides confirmation that the atmosphere was stable
while the imaging sessions were being linked. The set
of Landolt fields also enables determination of the
system’s transforms. The imaging of the asteroid
fields should be timed to put the FOV images as high
in the sky as practical (i.e. at low air mass), to
minimize the effect of any errors arising from the
atmospheric extinction.

This can entail a fairly long night of imaging.
For example, I usually do a R-V-V-R image sequence
of each field of view, using 2 minute exposure in R
and 3 minute exposure in V. Getting two Landolt
fields to start, then 8 target FOVs, and wrapping up
with two more Landolt fields adds up to 2 hours of
“shutter open” time. Adding in the time required for
centering on the target field, focus checks, image
downloading, and occasional autoguiding errors that
necessitate repeat of a field, this can add up to 3 to 4
hours of telescope time. (Those of you with fully-
automated systems with high-quality mounts will
have better efficiency; my system isn’t so fully
automated).

This is a nice way to spend time under the stars,
but I’ve found that even on nights that appear to be
stable at my backyard observatory, there is a risk that
the data ultimately shows that atmosphere conditions
changed in the course of the observing session. That
adds error and uncertainty to the resulting comp star
calibrations, and sometimes it is painfully obvious
that the data is wholly unreliable.

A modern alternative to this is use of a remote
internet-accessible observatory. There are increasing
numbers of these facilities located in high-altitude
sites where very good conditions are routine. Most of
them have telescopes that are outfitted with
photometric filters, and hence are perfect solutions to
the calibration of comp stars. I have used the Tzec
Maun Foundation’s “Big Mak” telescope for this
purpose, and it has been a delight! From high in the
New Mexico mountains, the sky is frequently clear,
dark, and stable (far better and more reliable than my
home location). The field of the “Big Mak” (a 14-
inch {/3.8 Maksutov-Newtonian with an ST-10 XME
and photometric BVRI filters) is a good match to my
home setup of 1 arc-sec pixels and 26 X 38 arc-min
FOV. Its fast optics give good SNR with 1 to 2
minute exposures. The Tzec Maun observatory
provides master flats, dark, and bias frames so the
observer need not use telescope time to gather those.

This has turned out to be a fine solution to the
challenge of calibrating comp stars.

The only drawback that I’ve found is that the
overall efficiency (“shutter open” time vs. total clock

time) is worse than at my home observatory. In a two
hour session I typically get 1 hour of shutter-open
time. Some of that efficiency loss is due to my own
weak (but slowly-improving) skill at manipulating
the remote telescope interface software.

4.2 Data Reduction

4.2.1. CCD image reductions

Regardless of where and how the images were
gathered, they must be reduced in the normal way —
bias, dark, and flat-field correction. Since we’re
striving for the best possible photometry, don’t skimp
on this step!

4.2.2. Differential Photometry for
Lightcurve reduction and Fourier
Curve model

The asteroid’s lightcurve is determined by
differential photometry in the usual way using MPO
Canopus. Canopus’ v.10’s “comp star selector” is a
real aid because it helps record the -catalog
photometry of the comp stars (which is good, but not
perfect) in the database

Merge all nights and determine a good lightcurve
and rotation period for the asteroid in the usual way.
Then, do two or three things:

1) Examine the lightcurve carefully to see if there
are any systematic changes in the shape of the
lightcurve as the solar phase curve changes. If
there are, then divide the sessions into two
groups (or more, if necessary) — one for “low
phase angle” and another for “high phase angle”
sessions. Asteroid 535 Montague is an example
of an object whose lightcurve changes noticeably
as the solar phase angle grows. Presumably this
is a manifestation of shadowing effects from
topography on the asteroid.

2) Run a Fourier fit of the lightcurve, at the
determined lightcurve period, and record the
Fourier coefficients (do this separately for the
“low phase angle” and “high phase angle”
groups if you have a case like 535 Montague,
where the lightcurve changes noticeably).

3) Export the entire MPO Canopus database to a
text file, from which it can be imported to Excel
for further analysis.



4.2.3. Export MPO Canopus Observations
File to Excel

With the lightcurve analysis done, I export all of
the MPO Canopus observations to a text file, which
can be opened in Excel for further analysis. The
analysis includes:

e Replacing MPO Canopus’ estimates of comp-star
magnitudes with “calibrated” magnitudes of the
comp stars. The MPO Canopus star catalog is
pretty good, and the estimated comp star
magnitudes are pretty good, but using “calibrated”
magnitudes as described above improves the
overall accuracy of V and R (and C) to about
+0.02 mag (full range)

e Determination of the asteroid’s observed V-
magnitude (at each data point for which a v-band
image was taken), and R-magnitude (for each
point at which an r-band image was taken). In the
case of C-band images, they are converted to V-
band using the procedure described above.

e Determination of the asteroid’s color index. For
the projects reported here I used (V-R), although
the same methods will work with any other color
index.

e Conversion of C and R magnitudes to “V”, to
create a master table of JD vs. Vg peerved-

The net result of this is a table of JD, Vueerved
that includes all data observed points.

The information on the asteroid’s orbital
parameters from JPL Horizons is interpolated into
this table, so that I can calculate the Sun distance (R),
Earth distance (D), solar phase angle (a) at each
observation time.

5. Getting the Asteroid’s Orbital
Parameters

The data reduction demands that we translate the
lightcurves into Vi using Eq.1. In order to do that we
need to know the asteroid’s Sun distance (R) and
Earth distance (D). Most planetarium programs will
give you this information, but it is often more
accurate and more convenient to download the data
from the “Horizons” system of the NASA Jet
Propulsion Laboratory (available on the internet at
http://ssd.jpl.nasa.gov/?horizons). There, you can set
your location, your target, a time interval, and receive
a table of all the parameters you request for all the
time ticks that you request. This table is easily
imported into Excel to support your lightcurve
analysis.

I downloaded the orbital information at 4 hour
increments, selecting a time near the beginning of the
night as a “reference time”. I then used a linear
interpolation (da/dt and d[5log(RD)]/dt) to determine
the parameters at the time of each observation.

6. Example: 1130 Skuld

This asteroid turned out to be a nice project. Its
lightcurve is shown in Figure 5. Skuld’s lightcurve
didn’t change noticeably during the time that I
observed it (from a = 0.3° to & = 17.6°), and its color
was also quite stable over the entire observed
apparition. The period (P = 4.807 hr) is short, so that
I could get at least one maximum and one minimum
each night, and for many all-night runs my lightcurve
captured both the primary and secondary maxima and
primary and secondary minima. The primary and
secondary minima are virtually identical magnitude;
the primary and secondary minima differ by only a
small amount. This meant that I could get at least
one, and sometimes two, “maxima” data points, and
one or two “minima” data points each night that I
observed the object.
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Figure 5: Lightcurve of 1130 Skuld.

The data analysis procedure was relatively
straightforward. Each night’s lightcurve data was
analyzed in MPO Canopus using several comp stars
in the usual way. Then I used one particularly clear
and stable night to do “all sky” photometry to
determine the standard V and R band magnitudes of
the comp stars for each lightcurve night. That enabled
me to put each lightcurve on a common V-mag
baseline. Overall, the photometric accuracy was
about 0.04 mag, considering the inherent SNR of
asteroid and star images, and the consistency across
comp stars and nights.

For each night’s lightcurve, I could select the
lightcurve “max brightness” data point, note the time,



determined the V-mag, translate that into reduced
magnitude Vg, and look up the solar phase angle at
the time of “max brightness”. An example of all this
is shown in Figure 6.
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V=13.789
Vg=13.789 — 1.334 = 12.455
Figure 6: Translating observed V-mag to reduced

magnitude.

I wanted to try to “average out” the inevitable
photometric noise (which was about +£0.02 mag), so I
made a little quadratic fit to the half-dozen or so data
points nearest the max/min of the lightcurve in order
to get an “averaged” estimate of the lightcurve max
and min. This worked nicely. In almost all cases the
“averaged” estimate didn’t differ from the single
brightest (or faintest) data point by more than a few
hundredths of a magnitude, so the ‘“averaging”
procedure may not have been necessary at all since
with or without it gave virtually identical phase
curves.

By repeating that process for each “max” and
“min” on each night of lightcurve data, I plotted the
phase curve, shown in Figure 7 (from Buchheim,
2010).

Note that the slope parameter G derived from the
“max” light is essentially the same as that derived
from the “min” light. This G = 0.25 is reasonable for
Skuld’s reported classification as an S-class asteroid
(NASA, 2008).
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Figure 7: Phase curve of 1130 Skuld, showing “max”
and “min” brightness curves.

7. Example: 535 Montague

This project proved to be a bit trickier, but it
forced me to learn about some considerations that
weren’t needed in the case of 1130 Skuld. The period
was long, so any single night might not have captured
a lightcurve max or min, yet I still wanted to take
advantage of the data gathered on every night. The
shape of the lightcurve changed as the solar phase
angle increased, so I had to account for that. The
southern California weather didn’t provide any good
(clear and stable) nights for linking the comp stars
from the lightcurve nights, so I relied on all-sky
photometry done at a remote observatory (the Tzec
Maun Foundation) to calibrate the comp stars.

7.1 Using the Fourier fit to Interpolate
and Extrapolate the Rotational
Lightcurve

535 Montague has a rotational lightcurve period
of P = 10.248 h, and its primary and secondary
maxima are significantly different in brightness, as
are its primary and secondary minima. This means
that on many nights, an all-night lightcurve might be
missing either the maximum brightness or the
minimum brightness, or both. How can we take good
advantage of a night that gives only a “partial”
lightcurve so that it contributes useful data points to
the phase curve?

Harris et al. (1989) dealt with this problem, and I
followed their procedure. The idea is to use the
Fourier fit model of the lightcurve as a way of
extrapolating to data points that weren’t actually
measured on a given night. The concept goes like



this: using several nights’ differential photometry
data, construct a complete rotational lightcurve, with
full coverage of the rotation. This is the standard
“lightcurve” project and MPO Canopus makes it
relatively easy. Once the full lightcurve and period
are determined, create a Fourier fit to the lightcurve.
MPO Canopus does this also, providing the Fourier
coefficients for the model lightcurve. This Fourier
model should use sufficient “orders” to capture all of
the essential features of the lightcurve. For the fairly
complicated shape of the lightcurve of 535
Montague, 1 found that 6 orders were barely
sufficient while using 8 orders gave a nice fit to the
measured lightcurve.

I exported the Fourier coefficients into an Excel
file (“fourier.xIs”). The Fourier model is a nice
“smoothed and averaged” mathematical
representation of the lightcurve, given by:

Volt) = H(a) +§an sin 2’;”) + ZN]:b cos(z’;”’ ) Eq.4
Where
Ve V-mag reduced magnitude of the
asteroid at time ¢ and phase angle «.
t Time (hours or days)
P Period (same units as t)
a,, b, Fourier coefficients from Canopus
H(a)  Average V-mag of the asteroid at phase

angle a.

This may look a bit complicated but it isn’t too
hard to program an Excel spreadsheet that will
calculate V) and plot a graph (see Figure 8).

How do you find H(a), which is, after all, the
value being sought? In the same Excel spreadsheet I
make two columns containing the table of
measurements for the night: JD and measured data
(in V reduced magnitudes). The spreadsheet
calculates the “Fourier fit” at each data point. This
allows me to do two things. I plot the data (D) on the
same graph as the Fourier curve [Vg], and manually
iterate the value of H(e) until I find the value of H(a)
that gives the best fit. “Best fit” is judged by
minimizing the squared error between the Fourier fit
and the actual data, summed over all of the data
points on a single night. The equation is:

&> ZZ[D(tj)—V(tj)]z

is the squared error between data (D) and model
(V). The summation extends over all data points
(where the j"™ data point was taken at time t).
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Figure 8: Excel spreadsheet can calculate Fourier-
model curves.

This Fourier fit has two uses. First, in a case like
1130 Skuld (where each night offers a max and min
brightness), the Fourier fit is a convenient way to
“average” the lightcurve shape, to smooth out
photometric errors.

Second, the Fourier fit is used to deal with nights
(such as 535 Montague) where neither the max nor
the min brightness is available. The Fourier fit,
matched to the night’s data, can be extrapolated to
the next convenient lightcurve max or min. The
concept is illustrated in Figure 9.

The lightcurve extrapolated to the nearest
maximum/minimum provides extremum magnitudes
to use as data points on the phase curve. That way,
each night for which you have data makes a
contribution to the phase curve. Even if the asteroid
would have set, or the Sun would have risen by the
time of lightcurve maximum, the Fourier
extrapolation tells you what the asteroid’s magnitude
would have been if you could have observed its
maximum. Look up the solar phase angle at this time
of maximum, and add the data point to your phase
curve plot.

There 1is one important caveat to the
extrapolation: it is based on the assumption that the
average magnitude, H(a), doesn’t change over the
course of the night up to the “extrapolated” data
point.
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Figure 9: Using the Fourier model to extrapolate to
unobservable lightcurve maximum or minimum.

7.2 What if H(a) isn’t Constant During a
Night’s Session?

For main-belt asteroids (and more distant
objects), it is usually safe to assume that H(a) =
constant over any night’s observations because the
solar phase angle changes only very little over a
single night. For example, in the case of 535
Montague, solar phase angle never changed by more
than 0.02 deg/hr, which is less than 0.2 degrees over
a night’s observation period. If you assume a typical
G = 0.15, the fastest that you expect Vi to change in
this case is about |[dVr/dt| < 0.002 mag/hr. That is, the
changing phase during a single night won’t alter the
Vg by more than a few of hundredths of a magnitude,
or roughly equal to my photometric accuracy. So, it is
reasonable (barely) to assume that H(a) is constant
over any night, and the procedure described in
Section 7.1 will work fine.

However, we know that in actuality a is not
constant; if it were, then there wouldn’t be any phase
curve to measure! Since o changes from night to
night, then it must also be a little different at dawn
than it was at dusk. For the case of 535 Montague the
effect wasn’t clearly detectible compared with
photometric noise. However, if you’re chasing a
near-Earth asteroid (NEA), whose solar phase angle
might change very rapidly even over the course of a
single night, then that fact needs to be accommodated
in your analysis.

This is done by making an iterative calculation
that Harris et al. (1989) described, and which is a
little tricky. The equation given for the Fourier fit of
the lightcurve (Eq. 4) can accommodate a non-

constant H(a), with no trouble. We just need to know
how to calculate H(a), but we only know that after
we’ve determined the phase curve parameter G!

So what Harris et al. (1989) did was to select a
“provisional” value of the slope parameter (say,
Gpro= 0.15), and use that provisional value to
calculate H(a) over the range of a’s on each night
(individually), for use in the Fourier fit of Eq. 4. This
was a simple calculation to add to my Excel
spreadsheet. The Fourier fit is matched to the night’s
lightcurve data points in the same way as described in
Section 7.1, with the only difference being that the
Fourier fit now includes the H(a) that is appropriate
to the phase angle of each data point.

The plot of the overall phase curve is then used
to determine a “revised/improved” value of G. That
revised/improved estimate is plugged in place of the
provisional value and the whole set of calculations
are run again. The procedure is iterated until things
converge on a stable value for G, which usually
doesn’t require more than a couple of iterations.

What I found — not surprisingly — was that this
iteration wasn’t really needed for my main-belt
objects. The effect of a varying in the course of a
night and the resulting non-constant H(a) amounted
to less than a hundredth of a magnitude.

However, in the case of a near-Earth asteroid
whose solar phase angle and distances may change
significantly in the course of each night, this iterative
adjustment is likely to be necessary to achieve the
maximum possible accuracy.

7.3 Does the Rotational Lightcurve
Change as Solar Phase Angle
Increases?

Most of us select nights that are near an
asteroid’s opposition when measuring the rotational
lightcurve to determine its synodic period. This
makes sense because that is when the asteroid is
brightest and you get the maximum rotational
coverage (because the asteroid is visible most of the
night).

However, does the lightcurve change its shape as
the solar phase angle changes? One might expect that
shadow effects from topography (hills or craters) on
the asteroid would alter the lightcurve since their
shadows become longer and cover greater areas on
the surface of the asteroid at increasing phase angles.
After all, you don’t see shadows on the full Moon,
when a = 0°, but at other phases the shadows of lunar
mountains are distinct. Indeed this effect is reported
in the professional literature. For example Gehrels
(1956) noted that the rotational lightcurve of 20
Massalia at a =~ 3° was measurably different from that



at o = 0.5°, and that it had changed character again by
o = 20°. The differences manifested themselves as
changes in the peak and valley brightness of about
0.03 mag and also changed the “sharpness” of the
peak and valley — not huge differences but definitely
measurable. Similarly, Groeneveld and Kuiper (1954)
found a similar effect for 7 Iris and 39 Lutetia.

The photometric accuracy for which we’re
striving in order to determine the phase curve is quite
sufficient to identify changes in lightcurve shape as
the solar phase angle increases; therefore, the data
analysis routine for determining the phase curve
should be able to accommodate these changes.

I have followed the approach suggested by
Harris and Young (1979). I determine a Fourier fit to
the lightcurve using a few nights of data near
opposition (o = 0°) and use this to represent the
lightcurve at low solar phase angle. Then I look for
obvious visual changes in the lightcurve from nights
at increasing solar phase angle. If a definite change is
visually apparent, I create a second Fourier fit to use
at high solar phase angles.

As it worked out, this was needed in the case of
535 Montague, where the shape and peak-to-peak
amplitude of the lightcurve changed noticeably at o >
9° (Figure 10).

7.4 Does the Asteroid’s Color Change as
Solar Phase Angle Increases?

There have been occasional hints in the literature
that the color of some asteroids might change a bit as
the solar phase angle changes. All of these purported
color changes are very subtle and uncertain. For
example, Belskaya et al. (2010) report that the (B-V)
and (V-R) color of 21 Lutetia may increase very
slightly (=0.001 mag/deg) with solar phase angle, and
Tupieva (2003) reports that the (U-B) color of 44
Nysa decreases (= —0.011 mag/deg) with increasing
solar phase angle. I plotted my inferred color of 535
Montague versus solar phase angle (Figure 11).
Fitting a simple linear trend line to the data does
show a slight increase in (V-R) color with a, but all
the data points are consistent with (V-R) = 0.37 =
0.02, which is the indicated accuracy of my
photometry. Hence, 1 conclude that I haven’t seen
evidence of a change in color during the course of
this apparition.
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Figure 10: 535 Montague’s Lightcurve shape changes
as solar phase angle increases.
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Figure 11: A hint, but no compelling evidence, for (V-R)
color change with solar phase angle.

8. Appendix A: Equations for ®@; and
D,

For the record, I give here the equations to
calculate Eq 2, taken from Bowell et al (1989). All
angles are to be interpreted as radians in these
equations:

W = exp[—90.56 tan> (e / 2)]
O () =Wes+(1-W)4,

where

- C sina
0.119+1.341sine —0.754sin’ &

$s =



a )’
o, = exp{— Al(tan EJ 1

A;=3.332
B;=0.631
C,=0.986
and

O, (@) =Weys +(1-W)¢,,
where

3 C,sina
0.119+1.341sin —0.754sin’ &

a)”?
&, = exp{— Az(tangj }

¢2S =1

A,=1.862
B,=1.218
C,=0.238
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