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Abstract 

The phase curve of an asteroid shows how its brightness changes as a function of solar phase angle. The 
project of determining an asteroid’s phase curve is challenging because it combines four photometric objectives:  
determination of the asteroid’s rotational lightcurve, monitoring the asteroid over a wide range of solar phase 
angles, high photometric accuracy, and FOV bridging or “all-sky” photometry to link the asteroid’s brightness 
from night to night. All of these are important because the different shapes of phase curves (caused by different 
surface characteristics) have a subtle effect. The typical phase curve project requires photometric accuracy of 
about ±0.03 mag or better; commits the observatory to a dozen nights, spread over about 2 months; and 
commits the astronomer to a set of data analyses that is significantly more extensive than is required for a typical 
“differential photometry rotational lightcurve” project. In this paper I will describe how I have gathered the 
necessary data, the procedures for data reduction, and some challenges in determining the slope parameter G. 

1. Introduction 

An asteroid’s phase curve contains valuable 
information related to the surface characteristics of 
the asteroid. Amateur efforts to determine asteroid 
phase curves are a much-needed addition to our 
knowledge, because not many asteroids have well-
determined phase curves, and few professional 
astronomers are doing such studies. 

The purpose of this paper is to explore a few 
practical aspects of the asteroid phase curve project: 

 What does a “good” phase curve look like? 
 What range of solar phase angles must be 

covered, and how long is this likely to take? 
 What photometric accuracy is required? 
 Should magnitudes be transformed to the 

standard V-band, or left in instrumental v-band? 
 Should the phase curve plot mean magnitude or 

peak magnitude of the lightcurve vs. solar phase 
angle? 

 Does the lightcurve change as the solar phase 
angle changes? 

 What procedure do the pro’s use to determine 
phase curves from photometric data? 

 For what level of accuracy should you strive 
when determining H and G? 

I’ll describe these topics in the context of two 
phase curve projects that I did in the past year. One 
of these, 1130 Skuld, was immediately successful 
(Buchheim, 2010). The other, 535 Montague, was 
more troublesome, but was a useful learning 

experience. The result for it will be submitted to the 
Minor Planet Bulletin shortly. 

 
2. Phase Curve Background 

The geometry of the observation of an asteroid is 
illustrated in Figure 1. The solar phase angle (α) is 
analogous to the moon’s phase; when α = 0°, the 
asteroid is “full” (i.e. fully illuminated). When α ≈ 
90°, the asteroid is in quadrature and is illuminated in 
the same way that a first- or third-quarter Moon is in 
that half of it its visible surface is in light and half is 
in darkness. Because of where they orbit, outside 
Earth’s orbit, main belt asteroids don’t reach solar 
phase angles much greater than about 20-30°. For 
example, think of Mars. It shows a “phase defect” but 
you never see a crescent Mars. The farther an object 
orbits from the Sun, the smaller the maximum 
observable solar phase angle. More distant objects 
(e.g. Jupiter Trojan asteroids) display a smaller range 
of solar phase angles and Kuiper-belt objects are so 
far away that Earth-bound observatories can observe 
them at solar phase angles of only α ≈ 0° ± 2°. 

On the other hand, near-Earth asteroids during 
their close approaches to Earth can be observed at 
quite large phase angles and, of course, spacecraft 
can arrange to observe their targets at large phase 
angles (Newburn et al., 2003). 

The motion of Earth and the asteroid in their 
respective orbits around the Sun gradually alters the 
solar phase angle. For a typical main-belt asteroid, 
the solar phase angle will go from about -20° to 



nearly 0° (at opposition) over an interval of 2 to 3 
months and then increase to about 20° over another 2 
to 3 months. 
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Figure 1:  Geometry of orbits:  Earth distance, Sun 
distance, and solar phase angle 

2.1 Characteristics of Bi-directional 
Reflectivity 

Imagine a narrow beam of collimated light aimed 
at a flat surface. Perhaps the surface is covered with 
snow, or with dirt, or with rocks. The surface isn’t 
smooth, so it won’t reflect the light like a mirror. In 
most real surfaces, there is a “forward gloss” (a 
noticeable amount of the incident light comes off in 
the direction that a mirror would have sent it), a 
“backscatter” (a fair amount may be reflected back 
toward the light source), and a general diffuse 
reflection that goes off in all directions. The smoother 
the surface, the more light is likely to be directed into 
the forward gloss. In a perfectly smooth (glassy ice) 
surface, quite a bit of the reflected light is directed 
into the forward gloss, giving a nearly specular 
reflection from the mirror-like surface. If the 
incoming beam is directed exactly perpendicular to 
the surface, then the “forward gloss” is directed back 
toward the source. This is the geometric situation that 
you have at solar phase angle = 0°. The forward and 
reverse glosses are both directed toward the observer. 
There can be a pronounced increase in brightness 
near zero solar phase angle as a result of this 
phenomenon, which is the so-called “opposition 
effect”. 

There are at least three physical effects that give 
rise to the opposition effect:  “shadow hiding”, 
“multiple scattering”, and “coherent backscatter” (see 
Lumme & Bowell, 1981). 

 

2.2 Reduced Magnitude 

Throughout an apparition, the solar phase angle 
isn’t the only thing that changes. The Earth-asteroid 
and Sun-asteroid distance also change continuously. 
These changing distances naturally affect the 
asteroid’s observed brightness and work in 
combination, not independently. This leads to the 
concept of “reduced magnitude” to account for the 
changing distances, which is defined by  

 
VR = V - 5log(RD)   Eq. 1 
 
Where 
V observed V magnitude 
R distance Sun to Asteroid (in AU) 
D distance Earth to Asteroid (in AU) 
 
VR is the brightness that the asteroid would have 

had if it were placed at 1AU from the Sun, and 
observed from a distance of 1AU from the observer. 
By placing it at a standard distance, VR “backs out” 
the effect of changing distance. Reduced magnitude 
is also sometimes written “VR(α)” to show that it is a 
function of solar phase angle (α). Another standard 
nomenclature, used in the standard phase curve 
model, is that reduced magnitude is called “H(α)”, 
and the special value H(0) when solar phase angle is 
zero is called simply “H” (the absolute magnitude of 
the asteroid). 

For main belt asteroids, these distances change 
slowly, so that they can be treated as if they are 
invariant over a few nights. However, over the 
couple-month time duration of a phase curve project, 
they probably change noticeably. Plotting VR vs. α 
shows how the brightness is changing solely due to 
the phase effect. That is the essence of the phase-
curve project. 

Add to above the fact that the asteroid is also 
rotating, meaning that its brightness changes on a 
time scale of a few hours as it spins. If the asteroid’s 
brightness is measured many times as the apparition 
progresses, its brightness changes due to all three 
effects. 

 
2.3 Standard Phase Curve Model   

As described in Bowell et al. (1989), the two-
parameter “H-G” model uses the following equation 
to describe the brightness (in reduced magnitude) of 
an asteroid as the solar phase angle changes: 

 
)]()()1log[(5.2)( 21   GGHH    Eq. 2 

 



Where: 
H The “reduced magnitude” at zero phase 

angle. It is sometimes written H0 to 
explicitly denote that it is  = 0°, or 
H(1,1,0) to denote that it is based on sun 
earth distances being 1 AU and  = 0°. 
These all mean the same thing. 

1 , 
2   These are functions that describe the 

single and multiple scattering of the 
asteroid’s surface. These functions are 
given in Appendix A, but if you are 
studying a main-belt asteroid and using 
MPO Canopus, you don’t need to deal 
with these equations because MPO 
Canopus’ H/G Calculator handles them.  

G  The “slope parameter” that describes the 
shape of the phase curve. The 
fundamental goal of the phase curve 
project is to determine G by plotting the 
data points (H vs. α) and finding the value 
of G that is the best fit to the data. 

 
2.4 What Does a “Good” Phase Curve 

Look Like? 

I searched the NASA ADS abstract service for 
“asteroid phase curves” and spent a few days at the 
local university library skimming through Icarus and 
the Astronomical Journal to find several papers 
describing asteroid phase curves that were developed 
by professional astronomers. Figure 2 is an example 
from Harris et al. (1989) of a “good” phase curve. 
Note several features: 

 The phase coverage is broad, from very low 
(near-zero) phase to phases greater than 20°.  

 The phase coverage is dense, giving confidence 
that the data have captured the essential shape of 
the curve. 

 The photometric accuracy is excellent. In this 
particular case, the error bars are barely larger 
than the plotted symbols. 

That is a challenging quality level for which to 
strive, but one that seems to be important. There are 
strong indications that the phase curve, specifically 
the slope parameter (G), is telling us something about 
the albedo and surface texture of the asteroid. 
However, G only changes by a few tenths, so the 
photometry and data analysis need to be quite 
accurate if the phase curve is to be reliable at this 
level. A few years ago, in my first attempt at a phase 
curve, the curve looked nice, but a combination of 
insufficient photometric accuracy (“only” about 

±0.05 mag) and insufficient phase coverage (α ≈ 2- 
12°) left me unable to distinguish between two 
competing values (G = 0.15 vs. G = 0.25) that had 
been previously published. 

It is also worthwhile noting that the data in 
Figure 21 deviates somewhat from the H-G model 
curve, particularly in that the data show a larger and 
sharper opposition effect than does the H-G model. 
This is not a unique example. Belskaya and 
Schevchenko (2000) show several phase curves 
where the data deviates from the H-G model. Getting 
more and better data provides a better understanding 
of the opposition effect and of asteroid surface 
properties. 

 

44 Nysa phase curve
(replotted from data in Harris et al (1989)
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Figure 2:  Example of a “professional” phase curve. 
Replotted from data in Harris et al. (1989). 

2.5 What is the “Typical” Expected 
Range of G for Different Asteroid 
Types? 

Both Harris (1989) and Lagerkvist and 
Magnusson (1990) determined slope parameters G 
for a goodly number of asteroids and correlated G to 
the asteroid taxonomic type. They found values 
ranging from G ≈ 0.04 ±0.06 for low albedo (e.g. C-
type) asteroids to G ≈ 0.45 ± 0.04 for high-albedo 
(e.g. E-type) asteroids. They showed a definite 
correlation that low-albedo objects had low G values 
and high-albedo objects had high G values. 

These results mean that we don’t expect to see a 
very wide range of G values. In order to provide a 
meaningful G value that can distinguish between 
different asteroid types or other asteroid properties, 
the accuracy of our determination must be pretty 
good, say within a formal error of ± 0.05 or better. 

Before going on, it’s important to say that 
finding a value for G is not sufficient on its own to 
determine taxonomic class. Without other supporting 



evidence, the best being spectral data, the most one 
can say is that value of G that is found is consistent 
with a particular taxonomic class or, more generally, 
objects of low or high albedo. 

  
2.6 Can My Phase Curve Distinguish 

Between Different Values of G? 

The nature of the need for quite good accuracy 
can be illustrated by Figure 3. Here, two phase curves 
are plotted, one with G = 0.1 and the other with G = 
0.3. How difficult is it to distinguish between these 
curves? If we have noise-free data ranging from α ≈ 
0° to α ≈ 30°, it’s easy to tell the two curves apart. 
For example, the brightness difference between the 
curves at α ≈ 25° is about 0.25 mag. If we only had 
data going to, say, α ≈ 10°, it would be harder to tell 
the two curves apart, since at α ≈ 10° the two curves 
differ by only about 0.15 mag. So you can see that 
it’s important to follow the asteroid out to fairly large 
solar phase angles. 
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Figure 3:  Theoretical phase curves, illustrating shape 
effect of “G” value and importance of reaching large 
solar phase angle. 

Now suppose that we missed the nights near 
minimum solar phase angle and started observing the 
asteroid at α ≈ 3°. We don’t know what its brightness 
was at α ≈ 0°, so can we tell the difference between 
the G = 0.1 curve and the G = 0.3 curve just by their 
shapes and slopes? That is the situation shown in 
Figure 4. The curves are virtually identical, differing 
by only 0.05 mag over the range α = 3-12°. Without 
those critical “near-zero solar phase” data points, it is 
very difficult to distinguish between different values 
of G. The H/G calculator utility in MPO Canopus 

will give you an answer, but the uncertainty will be 
large enough that the result can’t be used to reliably 
distinguish between different taxonomic classes. 

It is important to get those critical “minimum 
phase angle” data points, because the G calculated 
from observations only at α > 5° can be misleading. 
Hasegawa et al. (2009) noted this problem in their 
study of 4 Vesta. Using data from α ≈ 1.5° to 24°, the 
inferred value was G = 0.32 ± 0.04, but when the 
additional data points down to α = 0.12° were 
included, they determined the (presumably “correct”) 
significantly smaller value G = 0.23 ± 0.02.  
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Figure 4:  Reaching very low solar phase angle (α≈ 1o) is 
important, to distinguish G values and observe the 
“opposition effect”. 

2.7 Minimum, Maximum, or Average 
Magnitude? 

Asteroids change brightness as the rotate, so the 
long-term change in brightness caused by the 
changing solar phase angle is superimposed on a 
(usually) much more rapid cyclic variation in 
brightness due to the rotational lightcurve. 

Should the phase curve use the average, 
maximum, or minimum magnitude of the asteroid’s 
rotational lightcurve?  There seems to be no single 
answer to that question in the literature. The initial 
formal recommendation of the H-G system, reported 
in Marsden (1985), is silent on the subject. The 
seminal description of the H-G system (Bowell et al., 
1989), explicitly relates it to the mean (average) V-
band magnitude. Yet, some other examples of phase 
curves reported in the literature are based on 
maximum light, such as Harris (1989). 



There are theoretical and mathematical reasons 
to expect that the slope parameter of the phase curve 
may be slightly different depending on which points 
of the lightcurve are used. For example, Helfenstein 
and Veverka (1989) report calculations for the 
idealized cases of spheres and ellipsoids whose 
surfaces follow a standard reflectivity law. The phase 
curves for maximum, mean, and minimum magnitude 
have slightly different slope parameters. The 
difference isn’t great, but it neither is it trivial. The 
difference between their “max light” vs. “min light” 
phase curves amounts to about 0.3 mag at a solar 
phase angle of 30° (after the rotational lightcurve 
effects are removed). 

I also note that there is a subtle risk in the 
terminology regarding “mean” or “average” 
magnitude. First, the average magnitude is not the 
same as average brightness (or average light) – that 
logarithmic function in the definition of magnitude is 
important!  Most published phase curves that use the 
mean magnitude state explicitly that it is ‘mean 
magnitude’, not ‘mean light’ that is being calculated. 
If the rotational lightcurve is complex, then the 
determination of the mean (average) magnitude may 
not be obvious. The formal definition of “mean 
magnitude” is that the rotational lightcurve encloses 
an equal area above and below the mean-magnitude 
line (Gehrels, 1956). That is, the mean magnitude is 
not necessarily the midpoint between the brightest 
peak and the faintest valley of the rotational 
lightcurve. 

Considering that defining and identifying the 
“maximum” and “minimum” brightness of a real 
asteroid lightcurve is pretty unambiguous, and 
figuring that the possible difference between the 
phase functions based on “max” versus “min” 
brightness might be interesting, I’ve chosen to 
determine both the “max” and “min” brightness 
phase curves for my targets. As it worked out, in the 
case of 1130 Skuld there was almost no difference in 
G as determined by max vs. min brightness. For 535 
Montague, the “max brightness” phase curve appears 
to have a significantly different slope than does the 
“min brightness” phase curve. 

 
3. Phase Curve Error Analysis 

If you are mathematically inclined, you can 
understand the importance of these features by 
reference to the linear error analysis given in 
Asteroids II.  

Suppose that we have measurements of H(α) at 
many different solar phase angles. Call the phase 
angles where we have measurements αi, with i = 1, 2, 
3, ..., N. 

The phase curve is just the graph of H(α) vs. α 
and so the graph will have N data points. We will fit 
the data points to the curve of Eq.2 to get the best-fit 
value of G. The H/G Calculator utility in MPO 
Canopus is a particularly convenient to do this curve 
fitting. 

If we make a simplifying assumption that the 
photometric accuracy is the same for all data points, 
then the expected error in the estimated (best-fit) 
value of G is: 
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In this equation 
σ is the RMS photometric error in magnitudes 

(approximately 1/SNR). Obviously, smaller σ is 
better, achieved by higher SNR in the photometry. 

N is the number of solar phase angles at which 
we have data points. The square root term with “N-2” 
in the denominator demands that we make N (the 
number of data points) greater than 2. If N = 2, then 
we have no knowledge about the uncertainty in the 
slope parameter, G. This isn’t so mysterious if you 
remember that the phase curve has 2 parameters (H 
and G), hence with any two data points we can find a 
curve that is a perfect fit to the data, but there is no 
information about the probable error in the fit that 
might be caused by noise in the data. As long as N ≥ 
5, the square-root term is not much larger than 1. 

αi are the solar phase angles at which we have 
data (with i= 1, 2, 3, ..., N), and 

α0 is the average phase angle,  
 

 
i

iN  10  

The term involving the sum of the squares of the 
phase angles at which data points are given ( 2

i ), 

and the average phase angle 0  is a very important 

contributor to the error in G. A couple of 
observations about this term help to understand its 
significance. First, if we have data at only a single 
phase angle, then 

0 
i

, and, therefore, the 

denominator of this term equals 0. In this case, the 
uncertainty in G becomes indeterminate. That is, if 
we have only a single data point, then we know 
nothing about the shape of the curve and, hence, 
nothing about G. Second, the greater the range of 
solar phase angles covered by the data set, then the 
larger this denominator becomes and so the more 
accurately we’ll know G. 

For example, suppose that we have data at phase 
angles 0, 2, 4, and 6 degrees. The number of data 
points is N = 4, the sum-square is 5612  i , and 



the mean phase is 30  . The resulting value of this 

term is  and 1/[ ... ] = 0.22. Now, suppose we get two 
more data points, at α =8 and 10 degrees phase angle. 
Then we have N = 6 data points, the sum-square 
phase is 2202  i , the average phase angle is 

now 50  , and 1/[ ... ] = 0.12. So, getting those 

two more data points at larger phase angles provided 
a nearly two-fold improvement in the accuracy of our 
determination of G. 

There is a tricky point here: it isn’t just the fact 
that we had additional data points, but also that they 
were spread over a wider range of phase angles. The 

dispersion is described by the term   2/12
0

2  Ni  , 

and it is the dispersion that is  important. Having data 
points spread over a wide range of solar phase angles 
makes this term larger and so improves our estimate 
of G. This is reasonable, since in order to determine 
G we are looking at the shape of the magnitude vs. 
phase graph, but at the curvature in the graph, and 
this requires both many data points (to get the benefit 
of averaging) and a wide spread in the phase angle 
(to better display the curvature). 

Now, let’s look at “typical” values of these 
terms. 

σ is the photometric accuracy. If we have SNR = 
100 on both target and comp star, then we expect to 
be able to get σ ≈ 0.014 magnitude (assuming no 
systematic errors...) 

The term 
2N

N  ranges between about ≈ 1.73 to 

1.12 (for N= 3 to 10 data points). 
 
The term 

  2
0

2

1

 Ni

 ranged from 0.22 to 

0.12 in the example above. If we had equally-spaced 
data points at 0, 2, 4 ... 20 degrees, then this term 
would be 0.048, and it would get as small as 0.030 if 
we could go all the way to phase angle 28 degrees. 
The term involving G, 
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varies between 14.9 (for G = 0) to 42.3 (for G = 
0.55), over the reasonable range of expected values. 
Of course, you can’t do anything to affect this factor. 

Only σ, N, and the range of α values are under 
the observer’s control, so by far the most significant 
things you can do to improve the accuracy of your 
estimate of G are: 
 Get high signal-to-noise ratio, and properly 

calibrate your fields, to achieve good 
photometric accuracy. Shoot for σ ≤ 0.02 mag or 
better. 

 Get data at as many phase angles as possible, 
over as wide a range as possible. Take advantage 
of opportunities when an asteroid is at very low 
phase angle (α < 1°), and follow the asteroid as 
long as practical to get up to high solar phase 
angle (α > 15°). 
 
If our goal is to get ΔG ≈ 0.05 or better, then we 

need SNR > 100 and the dispersion term < 0.14. A 
little playing around with the numbers demonstrates 
that this implies a requirement for at least 5 data 
points, spread out between α ≈ 0° to at least α ≈ 15°, 
and photometric accuracy better than ± 0.03 mag. 

 
4. Determining the Phase Curve 

The procedure I use for measuring the phase 
curve has the following steps. 

 
Observations 

Planning and scheduling 

CCD photometry of the asteroid lightcurve 

Calibration of each night’s comp stars at my 
observatory, or at a remote internet observatory 

Data reduction 
CCD image reductions 

Differential photometry: Lightcurve reduction 
and Fourier curve model 

Data Analysis 
Put differential lightcurves onto a single baseline 
and determine asteroid color index 

Download Asteroid dynamical parameters:  solar 
phase angle, Earth distance, and Sun distance 

Translate lightcurves from V-mag to reduced 
magnitude VR 

Determining brightness at selected rotational 
phase points (max and min brightness) by using 
“actual” data points or “extrapolation” to 
min/max brightness using Fourier fit curve 

Plot the phase curve (VR vs. α) 

This is a project for which you need to enjoy the 
time at your desk and computer as much as you enjoy 
your time in the observatory under the stars. 
Convince yourself that the data reduction and data 
analysis is really interesting!  Constructing a phase 
curve will stretch your CCD photometry skill 
compared to differential photometry for rotational 
lightcurves. The project of determining an asteroid’s 
phase curve is challenging, because it combines four 
photometric objectives: determination of the 
asteroid’s rotational lightcurve, following the asteroid 
over a wide range of solar phase angles, doing either 



FOV bridging or “all-sky” photometry to link the 
asteroid’s brightness from night to night, and 
achieving quite high photometric accuracy. 

 
4.1 Observations 

4.1.1. Planning and scheduling: 

There are two big differences between planning a 
“phase curve” project and planning a “lightcurve 
project”. The first difference is the number of nights 
involved. Whereas you can often make a fine 
lightcurve determination with a few nights’ data, the 
phase curve project requires that you follow the 
asteroid over a wide range of solar phase angles,  
which usually means devoting about a dozen nights 
over a couple of months. The second difference is the 
importance of getting lightcurve data on the nights of 
minimum phase angle. For a “lightcurve” project, it 
isn’t particularly important which night(s) you 
observe, but if you are going to create a good phase 
curve that captures the “opposition effect”, it is 
critical to get data on the nights near α ≈ 0° ± 2°.  

The most attractive targets are those few 
asteroids that reach a very low solar phase angle (α ≤ 
1°) each year, since they offer the opportunity to 
measure the “opposition effect” that is a 
distinguishing feature of the phase curve. Each issue 
of the Minor Planet Bulletin contains a list of “low 
phase angle” candidates. You’ll need to sort through 
that list to identify targets that are appropriate for 
your location and equipment. I look for objects 
whose maximum brightness is at least 14 mag (for 
good SNR) and whose declination is higher than 
about 10 degrees (because from my 33 degree 
latitude and not-so-good southern horizon I don’t 
have many hours per night available for targets at low 
declinations). Because of the orientation of the 
ecliptic (where most of the main-belt asteroids are 
concentrated), this declination filter means that 
autumn and winter are the phase-curve season at my 
observatory. 

I begin following my target a few nights before 
minimum phase angle. There is value in getting good 
data both “pre-opposition” and “post-opposition”, but 
there is a risk that the “pre-opposition” data may be 
orphaned if it’s cloudy on the few nights of minimum 
phase angle. From my backyard observatory on the 
coastal plain of southern California, it’s not unusual 
to lose a string of nights to clouds. I haven’t done a 
statistical analysis, but there does seem to be a 
surprising correlation between an asteroid reaching 
low phase angle and clouds settling over my 
neighborhood.  

 

4.1.2. CCD photometry of the Asteroid 
Lightcurve 

The project begins with fairly routine imaging 
for asteroid lightcurve observations. I usually use a 
two-color (photometric filters) imaging sequence (R-
R-V-V-... etc) near opposition, when the asteroid is 
brightest and I can get a good SNR with modest 
exposure duration. Far from opposition I turn to 
“clear” (unfiltered) images to maintain high SNR as 
the asteroid fades. If I’m imaging in the “clear” filter, 
I still scatter a few V- and R-band images into the 
sequence to help link to nights where the images are 
primarily V- or R-band. 

Making several nights with two-color image sets 
enables me to determine the asteroid’s color (V-R). 
Color index is useful for two reasons. First, it is 
necessary to know the color index during data 
analysis in order to transform the C-band images to 
V-magnitudes. Second, it confirms that the asteroid’s 
color does not change as it rotates. (Yes, I know that 
the conventional wisdom, and all published data says 
that the full-disk color is essentially invariant at the 
±0.05 mag level, but who knows?  There might be a 
surprise waiting to be discovered!) 

I noted in the error analysis above that getting a 
good phase curve demands quite good photometric 
accuracy. Harris and Young (1989) is a strong 
example of this. They strove for photometric 
accuracy of “a few thousandths of a magnitude”. 
They also advised staying on the instrumental (b, v, r) 
system to maintain this level of differential 
photometric accuracy because once transformations 
are done (to get onto the standard B, V, R system), it 
is very difficult to achieve much better than 0.02 mag 
accuracy. Unfortunately, I wasn’t able to follow this 
advice fully (see the next section), and their 
guesstimate of 0.02-mag accuracy is about what I got 
overall. 

 
4.1.3. Calibration of Each Night’s Comp 

Stars 

Because the essence of the phase curve project is 
the determination of how the asteroid’s brightness 
changes, it is necessary to know the comp star 
brightness. There are two approaches that can be 
used:  “linking” of comp stars from night to night (on 
the instrumental system), or “all sky photometry” to 
determine the B-V-R magnitudes of comp stars from 
all nights. 

From a good observing site, the easiest way to do 
this is to link each nights comp stars to the preceding 
night. The idea is to take a short break near 
culmination, move the scope to the FOV of a 



“reference night”, take a few images (in all colors, if 
you’re doing two- or three-color series), and then 
return to the current night’s asteroid lightcurve series. 
Having images of “tonight’s comp stars” and the 
“reference night’s” comp stars, both at the same 
(low) air mass enables you to link the comp star 
brightness for all nights, relative to the reference 
night. It’s usually most convenient to make the first 
night of the project the “reference night”, but it 
doesn’t really matter which night is chosen as the 
reference night. 

For example, suppose that on night 1 we used 
star X as the comp star and on night 2 star Y was the 
comp star (and that the asteroid has moved fast 
enough that we can’t fit both into a single FOV). On 
night 2, near culmination, we took a few images of 
the FOV from night 1 (that contains star X). Make a 
table such as shown in Table 1. 

Assume that we have a reasonable (catalog) 
value of the V-mag of star X = 12.65. This doesn’t 
have to be particularly precise value because we’re 
going to use it as an “anchor point” – all nights and 
all comp stars will refer back to it. If its assigned 
magnitude is off a bit, it will only affect the resulting 
calculation of H; it won’t affect the value of G, which 
is a function of the shape of the phase curve. Further, 
we’ll stay on the instrumental system and not try to 
bring each comp star into the standard BVR 
photometric system. 

Now on night 2, we measured the instrumental 
magnitude (IM) of both star X and star Y at 
essentially the same air mass, and at nearly the same 
time, so that we can (hopefully) assume that the 
atmospheric conditions are the same on all images. 

Since we are assuming that our sensor is linear, 
we can write: 

 
[mag of star Y] - [mag of star X] = [Y2-X2] 
 

The V-mag of star Y is then calculated by: 
 
[mag of star Y] = [mag of star X] + [Y2-X2] 
where 
Y2 the instrumental magnitude of star Y, as 

measured on night 2 

X2  the instrumental magnitude of star X, as 
measured on night 2 

MagX  the “assigned V-mag” that we are using 

to anchor the calculations 

By doing this for each night, and staying on our 
instrumental system, our determination of the phase 
curve won’t be infected by any problems doing 
transforms. 

Any error in the assignment of a V-mag to the 
anchor star (star X) will result in a comparable error 
in the calculated asteroid absolute magnitude (H). In 
this example, if the “true” magnitude of star X were 
12.50 instead of 12.65, then our calculated value of H 
would be high (faint) by 0.15 mag. However, our 
determination of the phase curve parameter (G) 
would not be affected at all. Remember that G 
describes the shape of the curve and not its absolute 
brightness. 

The good news about this is that you can stay on 
your instrumental system and that modest error in 
determining (or estimating) the V-mag of your 
reference night’s comp stars won’t upset the shape of 
the phase curve. The drawbacks are:  (1) this method 
requires that each night that you do “linking” must be 
clear and stable so that changing sky conditions 
during the interval when you’re doing the linking 
don’t confuse the results, and (2) near opposition, the 
lowest-air-mass will occur at around midnight. The 
thing about that is that I have to be at work early the 
next morning. My preferred operating mode is to set 
the observatory to take a series of images of the 
target field all night – while I’m asleep – which 
means that doing the “linking” isn’t convenient. 

Unfortunately, really clear and stable (“sort of 
photometric”) nights are infrequent at my backyard 
observatory, so I can’t be confident that this “linking” 
procedure will be satisfactory. It isn’t unusual to see 
atmospheric transparency change by a tenth of a 
magnitude or so over less than an hour on a “typical” 
night. So, I have used two different approaches to 
linking the comp stars by “all sky” photometry. 
When a nice clear and stable (“sort of photometric”) 
night arrives, I devote that night to calibrating all 
comp stars from all of the nights used for asteroid 
monitoring. This entails imaging of: 

 a Landolt field near the horizon (air mass ≈ 2) 
 a Landolt field near culmination 
 each FOV used for asteroid photometry 
 one or more additional Landolt fields 

The first two Landolt fields enable me to 

Table 1:  “Linking” comp stars from different nights and FOVs 
 
Night 

 
Star 

IM (near culmination, 
at air mass = 1+ε) 

Assigned 
V- mag 

 
Calculation of “Linked” V-magnitude 

1 X -10.50 12.65  
Y -10.650 2 
X -10.40 

 Y2= X1 + [Y2-X2] 
Y2= 12.65 + [(-10.65)- (-10.40)] 



determine the atmospheric extinction coefficient 
(using the “Hardie method”). Capturing one or two 
additional Landolt fields after the FOV imaging 
provides confirmation that the atmosphere was stable 
while the imaging sessions were being linked. The set 
of Landolt fields also enables determination of the 
system’s transforms. The imaging of the asteroid 
fields should be timed to put the FOV images as high 
in the sky as practical (i.e. at low air mass), to 
minimize the effect of any errors arising from the 
atmospheric extinction. 

This can entail a fairly long night of imaging. 
For example, I usually do a R-V-V-R image sequence 
of each field of view, using 2 minute exposure in R 
and 3 minute exposure in V. Getting two Landolt 
fields to start, then 8 target FOVs, and wrapping up 
with two more Landolt fields adds up to 2 hours of 
“shutter open” time. Adding in the time required for 
centering on the target field, focus checks, image 
downloading, and occasional autoguiding errors that 
necessitate repeat of a field, this can add up to 3 to 4 
hours of telescope time. (Those of you with fully-
automated systems with high-quality mounts will 
have better efficiency; my system isn’t so fully 
automated). 

This is a nice way to spend time under the stars, 
but I’ve found that even on nights that appear to be 
stable at my backyard observatory, there is a risk that 
the data ultimately shows that atmosphere conditions 
changed in the course of the observing session. That 
adds error and uncertainty to the resulting comp star 
calibrations, and sometimes it is painfully obvious 
that the data is wholly unreliable. 

A modern alternative to this is use of a remote 
internet-accessible observatory. There are increasing 
numbers of these facilities located in high-altitude 
sites where very good conditions are routine. Most of 
them have telescopes that are outfitted with 
photometric filters, and hence are perfect solutions to 
the calibration of comp stars. I have used the Tzec 
Maun Foundation’s “Big Mak” telescope for this 
purpose, and it has been a delight!  From high in the 
New Mexico mountains, the sky is frequently clear, 
dark, and stable (far better and more reliable than my 
home location). The field of the “Big Mak” (a 14-
inch f/3.8 Maksutov-Newtonian with an ST-10 XME 
and photometric BVRI filters) is a good match to my 
home setup of 1 arc-sec pixels and 26 X 38 arc-min 
FOV. Its fast optics give good SNR with 1 to 2 
minute exposures. The Tzec Maun observatory 
provides master flats, dark, and bias frames so the 
observer need not use telescope time to gather those. 

This has turned out to be a fine solution to the 
challenge of calibrating comp stars. 

The only drawback that I’ve found is that the 
overall efficiency (“shutter open” time vs. total clock 

time) is worse than at my home observatory. In a two 
hour session I typically get 1 hour of shutter-open 
time. Some of that efficiency loss is due to my own 
weak (but slowly-improving) skill at manipulating 
the remote telescope interface software. 

 
4.2 Data Reduction 

4.2.1. CCD image reductions 

Regardless of where and how the images were 
gathered, they must be reduced in the normal way – 
bias, dark, and flat-field correction. Since we’re 
striving for the best possible photometry, don’t skimp 
on this step! 

 
4.2.2. Differential Photometry for 

Lightcurve reduction and Fourier 
Curve model 

The asteroid’s lightcurve is determined by 
differential photometry in the usual way using MPO 
Canopus. Canopus’ v.10’s “comp star selector” is a 
real aid because it helps record the catalog 
photometry of the comp stars (which is good, but not 
perfect) in the database 

Merge all nights and determine a good lightcurve 
and rotation period for the asteroid in the usual way. 
Then, do two or three things: 

1) Examine the lightcurve carefully to see if there 
are any systematic changes in the shape of the 
lightcurve as the solar phase curve changes. If 
there are, then divide the sessions into two 
groups (or more, if necessary) – one for “low 
phase angle” and another for “high phase angle” 
sessions. Asteroid 535 Montague is an example 
of an object whose lightcurve changes noticeably 
as the solar phase angle grows. Presumably this 
is a manifestation of shadowing effects from 
topography on the asteroid.  

2) Run a Fourier fit of the lightcurve, at the 
determined lightcurve period, and record the 
Fourier coefficients (do this separately for the 
“low phase angle” and “high phase angle” 
groups if you have a case like 535 Montague, 
where the lightcurve changes noticeably). 

3) Export the entire MPO Canopus database to a 
text file, from which it can be imported to Excel 
for further analysis. 
 



4.2.3. Export MPO Canopus Observations 
File to Excel 

With the lightcurve analysis done, I export all of 
the MPO Canopus observations to a text file, which 
can be opened in Excel for further analysis. The 
analysis includes: 

 Replacing MPO Canopus’ estimates of comp-star 
magnitudes with “calibrated” magnitudes of the 
comp stars. The MPO Canopus star catalog is 
pretty good, and the estimated comp star 
magnitudes are pretty good, but using “calibrated” 
magnitudes as described above improves the 
overall accuracy of V and R (and C) to about 
±0.02 mag (full range) 

 Determination of the asteroid’s observed V-
magnitude (at each data point for which a v-band 
image was taken), and R-magnitude (for each 
point at which an r-band image was taken). In the 
case of C-band images, they are converted to V- 
band using the procedure described above. 

 Determination of the asteroid’s color index. For 
the projects reported here I used (V-R), although 
the same methods will work with any other color 
index. 

 Conversion of C and R magnitudes to “V”, to 
create a master table of JD vs. Vobserved. 

The net result of this is a table of JD, Vobserved 
that includes all data observed points. 

The information on the asteroid’s orbital 
parameters from JPL Horizons is interpolated into 
this table, so that I can calculate the Sun distance (R), 
Earth distance (D), solar phase angle (α) at each 
observation time.  

 
5. Getting the Asteroid’s Orbital 

Parameters 

The data reduction demands that we translate the 
lightcurves into VR using Eq.1. In order to do that we 
need to know the asteroid’s Sun distance (R) and 
Earth distance (D). Most planetarium programs will 
give you this information, but it is often more 
accurate and more convenient to download the data 
from the “Horizons” system of the NASA Jet 
Propulsion Laboratory (available on the internet at 
http://ssd.jpl.nasa.gov/?horizons). There, you can set 
your location, your target, a time interval, and receive 
a table of all the parameters you request for all the 
time ticks that you request. This table is easily 
imported into Excel to support your lightcurve 
analysis. 

I downloaded the orbital information at 4 hour 
increments, selecting a time near the beginning of the 
night as a “reference time”. I then used a linear 
interpolation (dα/dt and d[5log(RD)]/dt) to determine 
the parameters at the time of each observation. 

 
6. Example:  1130 Skuld 

This asteroid turned out to be a nice project. Its 
lightcurve is shown in Figure 5. Skuld’s lightcurve 
didn’t change noticeably during the time that I 
observed it (from α = 0.3° to α = 17.6°), and its color 
was also quite stable over the entire observed 
apparition. The period (P = 4.807 hr) is short, so that 
I could get at least one maximum and one minimum 
each night, and for many all-night runs my lightcurve 
captured both the primary and secondary maxima and 
primary and secondary minima. The primary and 
secondary minima are virtually identical magnitude; 
the primary and secondary minima differ by only a 
small amount. This meant that I could get at least 
one, and sometimes two, “maxima” data points, and 
one or two “minima” data points each night that I 
observed the object. 

 

 
Figure 5:  Lightcurve of 1130 Skuld. 

The data analysis procedure was relatively 
straightforward. Each night’s lightcurve data was 
analyzed in MPO Canopus using several comp stars 
in the usual way. Then I used one particularly clear 
and stable night to do “all sky” photometry to 
determine the standard V and R band magnitudes of 
the comp stars for each lightcurve night. That enabled 
me to put each lightcurve on a common V-mag 
baseline. Overall, the photometric accuracy was 
about 0.04 mag, considering the inherent SNR of 
asteroid and star images, and the consistency across 
comp stars and nights. 

For each night’s lightcurve, I could select the 
lightcurve “max brightness” data point, note the time, 



determined the V-mag, translate that into reduced 
magnitude VR, and look up the solar phase angle at 
the time of “max brightness”. An example of all this 
is shown in Figure 6. 
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Figure 6:  Translating observed V-mag to reduced 
magnitude. 

I wanted to try to “average out” the inevitable 
photometric noise (which was about ±0.02 mag), so I 
made a little quadratic fit to the half-dozen or so data 
points nearest the max/min of the lightcurve in order 
to get an “averaged” estimate of the lightcurve max 
and min. This worked nicely. In almost all cases the 
“averaged” estimate didn’t differ from the single 
brightest (or faintest) data point by more than a few 
hundredths of a magnitude, so the “averaging” 
procedure may not have been necessary at all since 
with or without it gave virtually identical phase 
curves. 

By repeating that process for each “max” and 
“min” on each night of lightcurve data, I plotted the 
phase curve, shown in Figure 7 (from Buchheim, 
2010). 

Note that the slope parameter G derived from the 
“max” light is essentially the same as that derived 
from the “min” light. This G = 0.25 is reasonable for 
Skuld’s reported classification as an S-class asteroid 
(NASA, 2008). 

 

 
Figure 7:  Phase curve of 1130 Skuld, showing “max” 
and “min” brightness curves. 

7. Example:  535 Montague 

This project proved to be a bit trickier, but it 
forced me to learn about some considerations that 
weren’t needed in the case of 1130 Skuld. The period 
was long, so any single night might not have captured 
a lightcurve max or min, yet I still wanted to take 
advantage of the data gathered on every night. The 
shape of the lightcurve changed as the solar phase 
angle increased, so I had to account for that. The 
southern California weather didn’t provide any good 
(clear and stable) nights for linking the comp stars 
from the lightcurve nights, so I relied on all-sky 
photometry done at a remote observatory (the Tzec 
Maun Foundation) to calibrate the comp stars. 

 
7.1 Using the Fourier fit to Interpolate 

and Extrapolate the Rotational 
Lightcurve 

535 Montague has a rotational lightcurve period 
of P ≈ 10.248 h, and its primary and secondary 
maxima are significantly different in brightness, as 
are its primary and secondary minima. This means 
that on many nights, an all-night lightcurve might be 
missing either the maximum brightness or the 
minimum brightness, or both. How can we take good 
advantage of a night that gives only a “partial” 
lightcurve so that it contributes useful data points to 
the phase curve? 

Harris et al. (1989) dealt with this problem, and I 
followed their procedure. The idea is to use the 
Fourier fit model of the lightcurve as a way of 
extrapolating to data points that weren’t actually 
measured on a given night. The concept goes like 



this:  using several nights’ differential photometry 
data, construct a complete rotational lightcurve, with 
full coverage of the rotation. This is the standard 
“lightcurve” project and MPO Canopus makes it 
relatively easy. Once the full lightcurve and period 
are determined, create a Fourier fit to the lightcurve. 
MPO Canopus does this also, providing the Fourier 
coefficients for the model lightcurve. This Fourier 
model should use sufficient “orders” to capture all of 
the essential features of the lightcurve. For the fairly 
complicated shape of the lightcurve of 535 
Montague, I found that 6 orders were barely 
sufficient while using 8 orders gave a nice fit to the 
measured lightcurve. 

I exported the Fourier coefficients into an Excel 
file (“fourier.xls”). The Fourier model is a nice 
“smoothed and averaged” mathematical 
representation of the lightcurve, given by: 
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Where 
VR(t) V-mag reduced magnitude of the 

asteroid at time t and phase angle . 

t Time (hours or days)  

P Period (same units as t) 

an, bn Fourier coefficients from Canopus 

H(α) Average V-mag of the asteroid at phase 
angle . 

This may look a bit complicated but it isn’t too 
hard to program an Excel spreadsheet that will 
calculate V(t) and plot a graph (see Figure 8). 

How do you find H(α), which is, after all, the 
value being sought?  In the same Excel spreadsheet I 
make two columns containing the table of 
measurements for the night:  JD and measured data 
(in V reduced magnitudes). The spreadsheet 
calculates the “Fourier fit” at each data point. This 
allows me to do two things. I plot the data (D) on the 
same graph as the Fourier curve [VR(t)], and manually 
iterate the value of H() until I find the value of H(α) 
that gives the best fit. “Best fit” is judged by 
minimizing the squared error between the Fourier fit 
and the actual data, summed over all of the data 
points on a single night. The equation is: 
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is the squared error between data (D) and model 

(V). The summation extends over all data points 
(where the jth data point was taken at time tj). 

 

 
 

Figure 8:  Excel spreadsheet can calculate Fourier-
model curves. 

This Fourier fit has two uses. First, in a case like 
1130 Skuld (where each night offers a max and min 
brightness), the Fourier fit is a convenient way to 
“average” the lightcurve shape, to smooth out 
photometric errors. 

Second, the Fourier fit is used to deal with nights 
(such as 535 Montague) where neither the max nor 
the min brightness is available. The Fourier fit, 
matched to the night’s data, can be extrapolated to 
the next convenient lightcurve max or min. The 
concept is illustrated in Figure 9. 

The lightcurve extrapolated to the nearest 
maximum/minimum provides extremum magnitudes 
to use as data points on the phase curve. That way, 
each night for which you have data makes a 
contribution to the phase curve. Even if the asteroid 
would have set, or the Sun would have risen by the 
time of lightcurve maximum, the Fourier 
extrapolation tells you what the asteroid’s magnitude 
would have been if you could have observed its 
maximum. Look up the solar phase angle at this time 
of maximum, and add the data point to your phase 
curve plot. 

There is one important caveat to the 
extrapolation: it is based on the assumption that the 
average magnitude, H(), doesn’t change over the 
course of the night up to the “extrapolated” data 
point. 
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Figure 9:  Using the Fourier model to extrapolate to 
unobservable lightcurve maximum or minimum. 

7.2 What if H(α) isn’t Constant During a 
Night’s Session? 

For main-belt asteroids (and more distant 
objects), it is usually safe to assume that H() ≈ 
constant over any night’s observations because the 
solar phase angle changes only very little over a 
single night. For example, in the case of 535 
Montague, solar phase angle never changed by more 
than 0.02 deg/hr, which is less than 0.2 degrees over 
a night’s observation period. If you assume a typical 
G = 0.15, the fastest that you expect VR to change in 
this case is about |dVR/dt| ≤ 0.002 mag/hr. That is, the 
changing phase during a single night won’t alter the 
VR by more than a few of hundredths of a magnitude, 
or roughly equal to my photometric accuracy. So, it is 
reasonable (barely) to assume that H(α) is constant 
over any night, and the procedure described in 
Section 7.1 will work fine. 

However, we know that in actuality α is not 
constant;  if it were, then there wouldn’t be any phase 
curve to measure!  Since α changes from night to 
night, then it must also be a little different at dawn 
than it was at dusk. For the case of 535 Montague the 
effect wasn’t clearly detectible compared with 
photometric noise. However, if you’re chasing a 
near-Earth asteroid (NEA), whose solar phase angle 
might change very rapidly even over the course of a 
single night, then that fact needs to be accommodated 
in your analysis. 

This is done by making an iterative calculation 
that Harris et al. (1989) described, and which is a 
little tricky. The equation given for the Fourier fit of 
the lightcurve (Eq. 4) can accommodate a non-

constant H(α)t with no trouble. We just need to know 
how to calculate H(α), but we only know that after 
we’ve determined the phase curve parameter G! 

So what Harris et al. (1989) did was to select a 
“provisional” value of the slope parameter (say, 
Gprov= 0.15), and use that provisional value to 
calculate H(α) over the range of α’s on each night 
(individually), for use in the Fourier fit of Eq. 4. This 
was a simple calculation to add to my Excel 
spreadsheet. The Fourier fit is matched to the night’s 
lightcurve data points in the same way as described in 
Section 7.1, with the only difference being that the 
Fourier fit now includes the H(α) that is appropriate 
to the phase angle of each data point. 

The plot of the overall phase curve is then used 
to determine a “revised/improved” value of G. That 
revised/improved estimate is plugged in place of the 
provisional value and the whole set of calculations 
are run again. The procedure is iterated until things 
converge on a stable value for G, which usually 
doesn’t require more than a couple of iterations. 

What I found – not surprisingly – was that this 
iteration wasn’t really needed for my main-belt 
objects. The effect of α varying in the course of a 
night and the resulting non-constant H(α) amounted 
to less than a hundredth of a magnitude. 

However, in the case of a near-Earth asteroid 
whose solar phase angle and distances may change 
significantly in the course of each night, this iterative 
adjustment is likely to be necessary to achieve the 
maximum possible accuracy. 

 
7.3 Does the Rotational Lightcurve 

Change as Solar Phase Angle 
Increases? 

Most of us select nights that are near an 
asteroid’s opposition when measuring the rotational 
lightcurve to determine its synodic period. This 
makes sense because that is when the asteroid is 
brightest and you get the maximum rotational 
coverage (because the asteroid is visible most of the 
night). 

However, does the lightcurve change its shape as 
the solar phase angle changes? One might expect that 
shadow effects from topography (hills or craters) on 
the asteroid would alter the lightcurve since their 
shadows become longer and cover greater areas on 
the surface of the asteroid at increasing phase angles. 
After all, you don’t see shadows on the full Moon, 
when α ≈ 0°, but at other phases the shadows of lunar 
mountains are distinct.  Indeed this effect is reported 
in the professional literature. For example Gehrels 
(1956) noted that the rotational lightcurve of 20 
Massalia at α ≈ 3° was measurably different from that 



at α ≈ 0.5°, and that it had changed character again by 
α ≈ 20°. The differences manifested themselves as 
changes in the peak and valley brightness of about 
0.03 mag and also changed the “sharpness” of the 
peak and valley – not huge differences but definitely 
measurable. Similarly, Groeneveld and Kuiper (1954) 
found a similar effect for 7 Iris and 39 Lutetia. 

The photometric accuracy for which we’re 
striving in order to determine the phase curve is quite 
sufficient to identify changes in lightcurve shape as 
the solar phase angle increases; therefore, the data 
analysis routine for determining the phase curve 
should be able to accommodate these changes. 

I have followed the approach suggested by 
Harris and Young (1979). I determine a Fourier fit to 
the lightcurve using a few nights of data near 
opposition (α ≈ 0°) and use this to represent the 
lightcurve at low solar phase angle. Then I look for 
obvious visual changes in the lightcurve from nights 
at increasing solar phase angle. If a definite change is 
visually apparent, I create a second Fourier fit to use 
at high solar phase angles. 

As it worked out, this was needed in the case of 
535 Montague, where the shape and peak-to-peak 
amplitude of the lightcurve changed noticeably at α > 
9° (Figure 10). 

 
7.4 Does the Asteroid’s Color Change as 

Solar Phase Angle Increases? 

There have been occasional hints in the literature 
that the color of some asteroids might change a bit as 
the solar phase angle changes. All of these purported 
color changes are very subtle and uncertain. For 
example, Belskaya et al. (2010) report that the (B-V) 
and (V-R) color of 21 Lutetia may increase very 
slightly (≈0.001 mag/deg) with solar phase angle, and 
Tupieva (2003) reports that the (U-B) color of 44 
Nysa decreases (≈ –0.011 mag/deg) with increasing 
solar phase angle. I plotted my inferred color of 535 
Montague versus solar phase angle (Figure 11). 
Fitting a simple linear trend line to the data does 
show a slight increase in (V-R) color with α, but all 
the data points are consistent with (V-R) = 0.37 ± 
0.02, which is the indicated accuracy of my 
photometry. Hence, I conclude that I haven’t seen 
evidence of a change in color during the course of 
this apparition. 
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Figure 10:  535 Montague’s Lightcurve shape changes 
as solar phase angle increases. 

No evidence for (V-R) color change vs. solar phase angle
within accuracy of my photometry (+/- 0.02 mag)

formal linear fit:
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Figure 11:  A hint, but no compelling evidence, for (V-R) 
color change with solar phase angle. 

8. Appendix A:  Equations for Φ1 and 
Φ2 

For the record, I give here the equations to 
calculate Eq 2, taken from Bowell et al (1989). All 
angles are to be interpreted as radians in these 
equations: 
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